{catchsol\/e}

Title: The Al Shift: Rethinking the Developer’s Role in a Machine-Driven World

Speaker: Davide Montesin - 07/11/2025




About Me

Title: A Lifelong Passion for Computer Science
and Hacking

e I've gone from counting the bits and bytes
that fit into CPU register in the '90 to
working with Al

e Always curious about how things work
under the hood.

e Founder of Catch Solve, a tech company
focused on software and data quality

{catch

}



The State of Al in Software Development (2025)

Title: The Current State of Al for Developers

Today most devs use Al tools — from
GitHub Copilot to ChatGPT — to write,
test, or understand code. A significant
share of code in a typical project is already
generated or assisted by language

{catchsol\/e}



The Developer’s Role Is Evolving {catchsolve)

But that doesn't mean a
developer’s job has become
trivial. Al accelerates, but it
doesn't understand context. It
suggests solutions, but it
doesn't know the product
vision. And when it's wrong, it's
often wrong convincingly.

This is why the developer role




For Junior Developers {catchsolve)

Title: Risks and Opportunities for Junior Developers

e Routine tasks now automated

e Harder to learn fundamentals by
repetition

e Risk: losing the hard-won learning that
comes from mistakes and from time spent




New Paths for Juniors {catchsolvE}

Title: How Juniors Can Benefit

For juniors, Al can be a powerful
accelerator for learning. Like at school
when you copy from the classmate next to
you: you get the answer, not the
understanding. Use Al to learn the why —




For Senior Developers {catchsolve)

Title: Risks and Opportunities for Senior Developers

e Al can perform simple coding tasks,
reducing operational workload.

e Al can explain, refactor, and even suggest
better solutions.

e Al can generate documentation




New Paths for Seniors {catchsolvé)

Title: New Ways Ahead

e Al corrects syntax; seniors bring
experience and architectural vision.

e Al can't assess trade-offs, ethics, or
long-term design.

e Seniors mentor on thinking, not typing.




When AI Learns from AI: The Reliability Challenge {catch

Title: The Feedback Loop Risk

“If Al learns from human code today, and from Al's code
e Models trained on tomorrow... who will safequard the quality of knowledge?”

Al-generated code
risk data
degradation

e Bias amplification &
quality decay

Al-GENERATED .. _ MODEL
CODE

}



Know-how Pitfalls I've Seen (Consulting)

Title: When Companies Run Too Fast with Al

e Many teams use Al-generated code they
don’t fully understand

e Short-term speed, long-term fragility

e When things break, companies need
experienced developers/consultants

L

TECHNICAL DEBT
&
KNOWLEDGE LOSS

{catchsolve)




Security Pitfalls I've Seen (Consulting)

Title: When Security Is an Afterthought

e As a consultant, I've also seen software
with login security issues.
e Examples: weak password handling,

missing rate limiting, poor session
management.

{catch

e Examples: weak password handling
» Missing rate limiting, poor session
management

}



Al Tool Frustrations {catch

Al Tool Frustrations

Debugging Al-generated
code is more time-consuming

e “The biggest single frustration, is dealing
with Al solutions that are almost right, but > x
not quite.” ]




When AI Suggestions Break Focus

Title: Helpful... until they aren’t

e Constant suggestions can interrupt deep
work and flow.

e Cognitive overload from choosing among
“almost right” options.

e Tip: use focus modes or temporarily pause

7Y

Attention is a scarce resource —
design your tooling around it.

{catch

}



The 100% Automation Trap

{catchsol\/e}

Title: When forcing Al to do it all costs more

e Insisting on 100% AI output can take
longer than finishing it yourself.
e Know when to step in: use Al for

scaffolding, you for judgment and polish.

e Set a time/quality threshold: if it's not




The Road Ahead {catchsolva}

The work is no longer writing lines: it's clarifying intents, constraints, and
value. Code becomes a means, not an end.

e Conversations that generate systems.
» Specification before implementation.
e Time spent on the “why”, not the “how".

Time spent on the why’,
not the ‘how’

More time to focus on core
business than coding



The Developer of the Future {catchsolv&)

The developer of the future orchestrates components, data, and models like a
composer: a balance between intuition and rigor.

e More composition, less friction.
e Tools as an extension of thought.




LELCEWENS

Title: Practical principles for a human+AI
workflow

e Keep humans as ground truth: tests, reviews,
and data provenance first.

e Protect focus: pause suggestions when
thinking; batch interactions.

e Security is non-negotiable: login, sessions,
rate limits, secrets.

e Know when to stop: if Al stalls, take the wheel

{catch

}



Thank You {catchsolva}

Thank you



