ow industrial are you?

)
{3
2

Contents

" Whatis a PLC

=" Modern PLC systems

= OpenPLC

= Performance comparison
= OpenPLC and Networking
= Conclusions

= Future Work

All images are CC, unless otherwise noted

unibz

PLC background

= PLC —Programmable Logic Controller
= Product of the late ‘60s
= |nitially installed to replace bulk of relay matrices

= Primarily targeted electricians and engineers

unibz

All images are CC, unless otherwise noted

PLC background

= PLC —Programmable Logic Controller
" Product of the ‘70s
= |nitially installed to replace bulk of relay matrices

= Primarily targeted electricians and engineers

= Now, PLCs include and Advanced control logics
= Distributed I/O

= High speed feed-back control loops

= Motion control, including robotics

unibz

All images are CC, unless otherwise noted

Modern PLC systems

= Proprietary Runtime
= Middleware running on custom Linux or Windows systems
= Open-source variants exist - for vendors - e.g., CoDeSys

= Licensed per system or per size

unibz

32 Digital Input

All images are CC, unless otherwise noted

Modern PLC systems

= Proprietary Runtime
= Middleware running on custom Linux or Windows systems
= Open-source variants exist - for vendors - e.g., CoDeSys

= Licensed per system or per size

" Proprietary hardware binding SW to a product
= e.g., Siemens S7 products work only with Simatic runtime
= Rugged hardware made for extreme working conditions

= Strong branding relying on distribution and availability

unibz

32 Digital Input

All images are CC, unless otherwise noted

OpenPLC

= Portable runtime system
= Core is written in C
= Typically comes with a Python-based webserver

= Packaged with installer, easy to install on any generic device

unibz

OpenPLC

= Portable runtime system
= Core is written in C
= Typically comes with a Python-based webserver

= Packaged with installer, easy to install on any generic device

unibz

OpenPLC

= Portable runtime system
= Core is written in C
= Typically comes with a Python-based webserver

= Packaged with installer, easy to install on any generic device

= Works on Open Hardware
= Microcontrollers, e.g., Arduino Uno/Nano/Mega
= Single board computers, such as Raspberry Pl

= Sometimes also available as rugged version

unibz

OpenPLC

* Home Automation — Programmable Logic Controller
= Low cost, open hardware and open source
= Easy to program thanks to intuitive languages

= However, constrained due to limited 1/0O

unibz

X0 YO
(
\
X1

OpenPLC

* Home Automation — Programmable Logic Controller
= Low cost, open hardware and open source
= Easy to program thanks to intuitive languages

= However, constrained due to limited 1/0O

= Reevaluation of use due to shift to vPLC
= May open a new target use
* OpenPLC runtime is ready for containerization

= Multi-instance ready on a general-purpose on-premise server

unibz

X0 YO
(
\
X1

Performance comparison

= Compute comparison
= vPLC instances Open vs Commercial
= Run on Generic Purpose instance

= Target hardware can also be Open, e.g., ARM64 systems

unibz

Performance comparison

= Compute comparison
= vPLC instances Open vs Commercial
= Run on Generic Purpose instance

= Target hardware can also be Open, e.g., ARM64 systems

= Compute performance

= Assess the determinism of a vPLC instance

* Run compute only tasks

= Assess interference of shared resources

unibz

Performance comparison

" Compute performance
= Compute Fibonacci numbers of a 10% load
= Increase load in steps of 10
= Repeat with 2 or more shared instances

= Optimized Linux kernel with PREEMPT_RT

= Numbers performance

= High Fibonacci number f(x) every 10 ms

= 100 times for 10% load, 200x for 20%...

unibz

Performance comparison - compute

300 us 1 3000 us
200 us I 2000 us -
100 us -
1000 us +
E A
£ ou g_ 0
-100 us
-1000 us
-200 us A |
-2000 us -
-300 us +
-3000 us
0 20000 40000 60000 80000 : 0000 20000 50600 20000
Num. ciclo vple Num. ciclo vplc
Without resource pinning With resource pinning
I

unibz

Performance comparison

= Compute first results
= Resource pinning not as effective as with Commercial
= Container includes webserver

= -> Resource contention if pinned

= vPLC must thus either
= Run PLC core only

= Be orchestrated to separate server from PLC core

unibz

Performance comparison - compute

CoDeSys 10% load

OpenPLC 10% load

unibz

jitter

10 us A

5 us

Jitter

0 us A

-5 Us

-10 us A

200 us 1

100 us -

0 us

-100 us A

-200 us A

-300 us -

T
20000

T
40000
Num. ciclo vplc

T
60000

T
80000

20000

40000
Num. ciclo vplc

60000

80000

Performance comparison - compute

CoDeSys 30% load

OpenPLC 30% load

unibz

20 us

0 us -

jitter

-20 us

2000 us A

1500 us -

Jitter

1000 us

500 us -

0 us -

-500 us A

0 20000 40000 60000 80000
Num. ciclo vplc

0 20000 40000 60000 80000
Num. ciclo vplc

Performance comparison

= Compute performance lower
= 1/3 of Fibonacci numbers with same CPU load
= Jitter also inconsistent, 3x with same CPU load

= Multiple instances multiply values almost linearly

= Results show that

= Still possible to use

= GP device has multiple of computing power

= Jitter is main focus, has to be kept low

unibz

Networking

= Communication performance ,

i} Container] Container2
= High speed controls need right protocols .| (VPLC) (VPLC)
= Default protocols not suitable =g

eth0 (veth) eth0 (veth)
= OpenPLC allows communication plugins, e.g., EtherCAT
= Port sharing z &
T 9
= Multiple vPLC can share a port = =
P P C Mac-VLAN)
= MACVLAN showed minimal delay and jitter | |
ethO
= Protocol agnostic and OSI/ISO Iv.2 compatible T

unibz

Networking

" Complicated installation and management
= All three components compiled and installed separately
= EtherCAT driver compiled JIT -> Docker installation cumbersome

= Plugin requires running slave configuration, OpenPLC running slave mapping

EtherCAT EtherCAT

Master Plugin OECHIFEE

v
"

Conclusions

= Compute performance
= Lower performance than commercial not a problem
= Jitter needs to be addressed and managed

= Small scale industrial control already viable

unibz

Conclusions

= Compute performance
= Lower performance than commercial not a problem
= Jitter needs to be addressed and managed

= Small scale industrial control already viable

= Network use
= High performance stack possible
= Compute jitter still problematic for <1ms control

= Network stack use cumbersome

unibz

Future Work

= Compute performance
= Orchestration and pinning of threads
= Control group isolation

= Runtime optimizations at kernel level

unibz

Future Work

= Compute performance
= Orchestration and pinning of threads
= Control group isolation

= Runtime optimizations at kernel level

= Network use

= Automation of EtherCAT stack use
= Docker build scripts for driver installation

= Native driver performance tests

unibz

Florian Hofer

info@florianhofer.it

Yoo Yo%

	Slide 1: OpenPLC
	Slide 2: Contents
	Slide 3: PLC background
	Slide 4: PLC background
	Slide 5: Modern PLC systems
	Slide 6: Modern PLC systems
	Slide 7: OpenPLC
	Slide 8: OpenPLC
	Slide 9: OpenPLC
	Slide 10: OpenPLC
	Slide 11: OpenPLC
	Slide 12: Performance comparison
	Slide 13: Performance comparison
	Slide 14: Performance comparison
	Slide 15: Performance comparison - compute
	Slide 16: Performance comparison
	Slide 17: Performance comparison - compute
	Slide 18: Performance comparison - compute
	Slide 19: Performance comparison
	Slide 20: Networking
	Slide 21: Networking
	Slide 22: Conclusions
	Slide 23: Conclusions
	Slide 24: Future Work
	Slide 25: Future Work
	Slide 26: Florian Hofer

