
OpenPLC
How industrial are you?

Contents

▪ What is a PLC

▪ Modern PLC systems

▪ OpenPLC

▪ Performance comparison

▪ OpenPLC and Networking

▪ Conclusions

▪ Future Work

All images are CC, unless otherwise noted

PLC background

▪ PLC – Programmable Logic Controller

▪ Product of the late ‘60s

▪ Initially installed to replace bulk of relay matrices

▪ Primarily targeted electricians and engineers

All images are CC, unless otherwise noted

PLC background

▪ PLC – Programmable Logic Controller

▪ Product of the ‘70s

▪ Initially installed to replace bulk of relay matrices

▪ Primarily targeted electricians and engineers

▪ Now, PLCs include and Advanced control logics

▪ Distributed I/O

▪ High speed feed-back control loops

▪ Motion control, including robotics

All images are CC, unless otherwise noted

Modern PLC systems

▪ Proprietary Runtime

▪ Middleware running on custom Linux or Windows systems

▪ Open-source variants exist - for vendors - e.g., CoDeSys

▪ Licensed per system or per size

All images are CC, unless otherwise noted

Modern PLC systems

▪ Proprietary Runtime

▪ Middleware running on custom Linux or Windows systems

▪ Open-source variants exist - for vendors - e.g., CoDeSys

▪ Licensed per system or per size

▪ Proprietary hardware binding SW to a product

▪ e.g., Siemens S7 products work only with Simatic runtime

▪ Rugged hardware made for extreme working conditions

▪ Strong branding relying on distribution and availability
All images are CC, unless otherwise noted

OpenPLC

▪ Portable runtime system

▪ Core is written in C

▪ Typically comes with a Python-based webserver

▪ Packaged with installer, easy to install on any generic device

OpenPLC

▪ Portable runtime system

▪ Core is written in C

▪ Typically comes with a Python-based webserver

▪ Packaged with installer, easy to install on any generic device

OpenPLC

▪ Portable runtime system

▪ Core is written in C

▪ Typically comes with a Python-based webserver

▪ Packaged with installer, easy to install on any generic device

▪ Works on Open Hardware

▪ Microcontrollers, e.g., Arduino Uno/Nano/Mega

▪ Single board computers, such as Raspberry PI

▪ Sometimes also available as rugged version

OpenPLC

▪ Home Automation – Programmable Logic Controller

▪ Low cost, open hardware and open source

▪ Easy to program thanks to intuitive languages

▪ However, constrained due to limited I/O

OpenPLC

▪ Home Automation – Programmable Logic Controller

▪ Low cost, open hardware and open source

▪ Easy to program thanks to intuitive languages

▪ However, constrained due to limited I/O

▪ Reevaluation of use due to shift to vPLC

▪ May open a new target use

▪ OpenPLC runtime is ready for containerization

▪ Multi-instance ready on a general-purpose on-premise server

Performance comparison

▪ Compute comparison

▪ vPLC instances Open vs Commercial

▪ Run on Generic Purpose instance

▪ Target hardware can also be Open, e.g., ARM64 systems

Performance comparison

▪ Compute comparison

▪ vPLC instances Open vs Commercial

▪ Run on Generic Purpose instance

▪ Target hardware can also be Open, e.g., ARM64 systems

▪ Compute performance

▪ Assess the determinism of a vPLC instance

▪ Run compute only tasks

▪ Assess interference of shared resources

Performance comparison

▪ Compute performance

▪ Compute Fibonacci numbers of a 10% load

▪ Increase load in steps of 10

▪ Repeat with 2 or more shared instances

▪ Optimized Linux kernel with PREEMPT_RT

▪ Numbers performance

▪ High Fibonacci number f(x) every 10 ms

▪ 100 times for 10% load, 200x for 20%...

Performance comparison - compute

With resource pinningWithout resource pinning

Performance comparison

▪ Compute first results

▪ Resource pinning not as effective as with Commercial

▪ Container includes webserver

▪ -> Resource contention if pinned

▪ vPLC must thus either

▪ Run PLC core only

▪ Be orchestrated to separate server from PLC core

Performance comparison - compute

CoDeSys 10% load

OpenPLC 10% load

Performance comparison - compute

CoDeSys 30% load

OpenPLC 30% load

Performance comparison

▪ Compute performance lower

▪ 1/3 of Fibonacci numbers with same CPU load

▪ Jitter also inconsistent, 3x with same CPU load

▪ Multiple instances multiply values almost linearly

▪ Results show that

▪ Still possible to use

▪ GP device has multiple of computing power

▪ Jitter is main focus, has to be kept low

Networking

▪ Communication performance

▪ High speed controls need right protocols

▪ Default protocols not suitable

▪ OpenPLC allows communication plugins, e.g., EtherCAT

▪ Port sharing

▪ Multiple vPLC can share a port

▪ MACvLAN showed minimal delay and jitter

▪ Protocol agnostic and OSI/ISO lv.2 compatible

H
o
st

 u
se

rs
p
ac

e
H

o
st

 k
e
rn

e
l

Container1

(vPLC)

eth0 (veth)

eth0

Container2

(vPLC)

eth0 (veth)

Mac-VLAN

▪ Complicated installation and management

▪ All three components compiled and installed separately

▪ EtherCAT driver compiled JIT -> Docker installation cumbersome

▪ Plugin requires running slave configuration, OpenPLC running slave mapping

Networking

EtherCAT
Master

EtherCAT
Plugin

OpenPLC

Conclusions

▪ Compute performance

▪ Lower performance than commercial not a problem

▪ Jitter needs to be addressed and managed

▪ Small scale industrial control already viable

Conclusions

▪ Compute performance

▪ Lower performance than commercial not a problem

▪ Jitter needs to be addressed and managed

▪ Small scale industrial control already viable

▪ Network use

▪ High performance stack possible

▪ Compute jitter still problematic for <1ms control

▪ Network stack use cumbersome

Future Work

▪ Compute performance

▪ Orchestration and pinning of threads

▪ Control group isolation

▪ Runtime optimizations at kernel level

Future Work

▪ Compute performance

▪ Orchestration and pinning of threads

▪ Control group isolation

▪ Runtime optimizations at kernel level

▪ Network use

▪ Automation of EtherCAT stack use

▪ Docker build scripts for driver installation

▪ Native driver performance tests

Florian Hofer
info@florianhofer.it

	Slide 1: OpenPLC
	Slide 2: Contents
	Slide 3: PLC background
	Slide 4: PLC background
	Slide 5: Modern PLC systems
	Slide 6: Modern PLC systems
	Slide 7: OpenPLC
	Slide 8: OpenPLC
	Slide 9: OpenPLC
	Slide 10: OpenPLC
	Slide 11: OpenPLC
	Slide 12: Performance comparison
	Slide 13: Performance comparison
	Slide 14: Performance comparison
	Slide 15: Performance comparison - compute
	Slide 16: Performance comparison
	Slide 17: Performance comparison - compute
	Slide 18: Performance comparison - compute
	Slide 19: Performance comparison
	Slide 20: Networking
	Slide 21: Networking
	Slide 22: Conclusions
	Slide 23: Conclusions
	Slide 24: Future Work
	Slide 25: Future Work
	Slide 26: Florian Hofer

