APP4CAM RUNNING ON INNOVATIVE CAMERA TRAPS IN THE FIELD

Daniel Waxweiler

R&T Engineer
Luxembourg Eco-hydrological Observatory (LEO)

7th November 2025

OPPORTUNITIES IN BIODIVERSITY MONITORING

Traditional biodiversity monitoring methods

- Ethical issues
 - Trapping newts for hours before identifying them
 - Killing insects for species identification
- Labor-intensity

OPPORTUNITIES IN BIODIVERSITY MONITORING

- Traditional biodiversity monitoring methods
 - Ethical issues
 - Trapping newts for hours before identifying them
 - Killing insects for species identification
 - Labor-intensity
- What if we applied the newest technologies including affordable high-resolution cameras and Al classification models to these species?

NEWTCAM DEVICE

Photo by NHBS of a NEWTCAM device

Photo by NEWTCAM device of a great crested newt and a predaceous diving beetle

DIMON DEVICE

Photo by LIST of a DiMON device connected to a Vane Trap

Photo by a DiMON device of a Scaeva hoverfly

HARDWARE USED

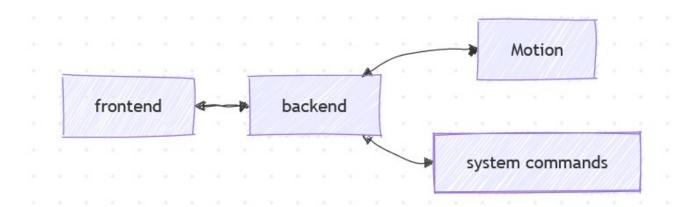
Boards

- NEWTCAM device: customised Variscite board
- DiMON device: Raspberry Pi + Witty Pi
- Both allowing to run Debian-based operating systems

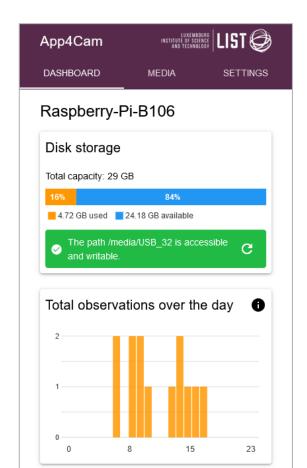
Additional hardware

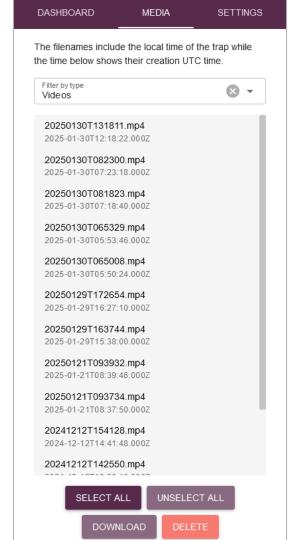
- Wi-Fi module for access point feature
- SD card for fast data retrieval
- Strips with infrared and visible LEDs on NEWTCAM device

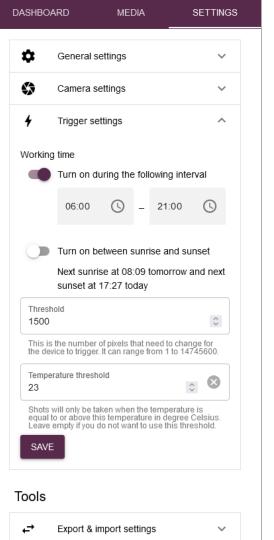
APP4CAM


Enabling researchers to configure their camera traps efficiently and easily in the field as well as accessing the data collected while maintaining a low energy consumption

Adriano Gama




Daniel Waxweiler



APP4CAM

TECHNOLOGY STACK & REPOSITORIES

Backend

- TypeScript
- NestJS
- Some C programs
- Some shell scripts

Frontend

- TypeScript
- Quasar
- Vue.js

https://github.com/LIST-LUXEMBOURG/App4Cam-Backend

https://github.com/LIST-LUXEMBOURG/App4Cam-Frontend

FUNDING

- Development funded by several projects
 - 2021 2023: AURINION: Ministry of Environment, Climate and Biodiversity of Luxembourg
 - 2021 2022: POLLICAM: self-funded
 - 2022 2025: CAMPHIBIAN: Luxembourg National Research Fund (FNR)
 - 2023 2024: DiMON 2023: self-funded
 - 2024 2025: DiMON: Luxembourg National Research Fund (FNR)
- App4Cam development was always only a small part.

PUBLICATION PROCESS

- Open-source publication process started as part of software disclosure for transferring technology in January 2024
 - Main justification: Researchers need to be able to verify code functionality to fully understand the data collection methodology.
- Validations required
 - Business and valorisation department
 - Legal department
 - Security team
 - Several reminders needed over the course of the months
- Published in November 2024 under a GNU General Public License v3.0 license

FUTURE

Challenges

- Funding: Research funding usually limited to specific project. What about external requests?
- Increasing long-term usage and compatibility

Wishes

- Migration of backend to Rust
- Containerisation of frontend and backend and other code parts
- Integration of object detection and image classification models (edge computing)
- Transfer of heartbeat and data via 4G

thank you

contact

Daniel Waxweiler daniel.waxweiler@list.lu

- https://github.com/LIST-LUXEMBOURG/App4Cam-Frontend
- https://github.com/LIST-LUXEMBOURG/App4Cam-Backend

