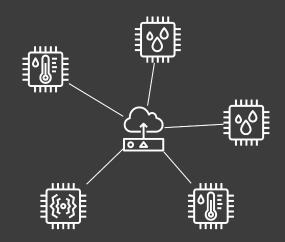
# Making Sense of Sensors Semantic Access to to Time Series Data

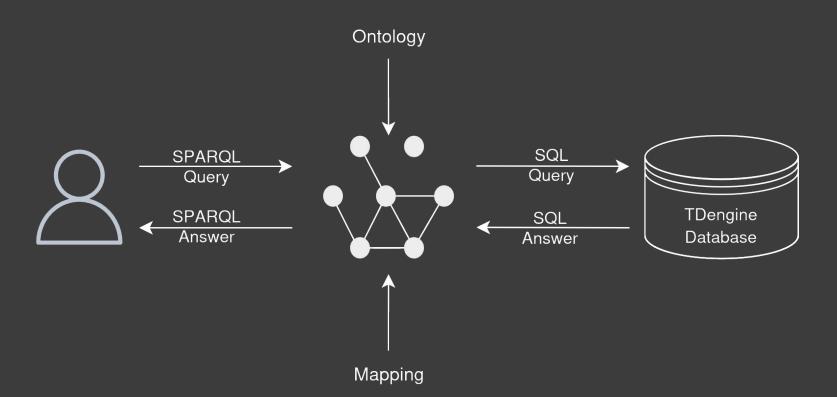
#### **Manuela Corte Pause**


SFSCON, Bolzano, November 7th 2025



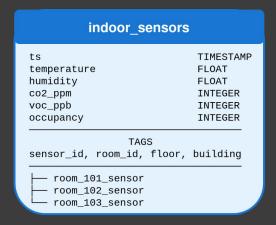
#### The IoT Data Challenge

IoT generates large amount of data

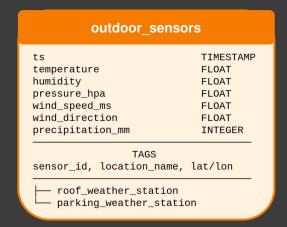

 Sensors from different vendors use different formats even if the data they refer to follow similar patterns



**Solution**: semantic layer over IoT data that provides a common representation



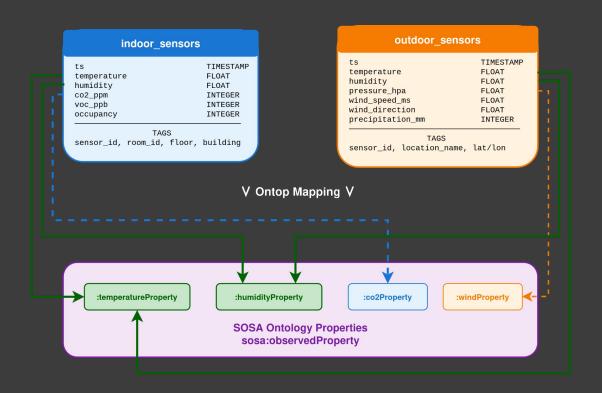

# Our approach




### **TDengine**

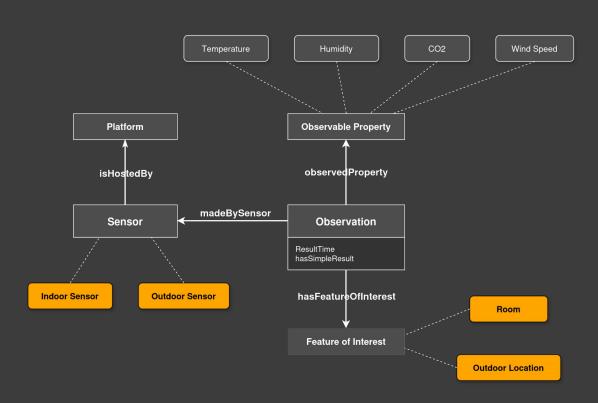
 Extremely fast open source time-series database




- One table per device approach (lock-free, append only writes)
- Logically unified structure for tables






#### **Ontop**

- SPARQL to SQL translation
- Translation possible through mapping
- Ontology as shared vocabulary





#### SOSA Ontology



- Widely used ontology
- Interoperability
   across IoT systems
- Captures not just data values, but measurement context



## Putting the Pieces Together

```
PREFIX sosa: <https://www.w3.org/TR/vocab-ssn/>
PREFIX : <http://example.org/building/>

SELECT ?location ?humidity ?time
WHERE {
    ?obs sosa:observedProperty :humidityProperty ;
        sosa:hasFeatureOfInterest ?location ;
        sosa:hasSimpleResult ?humidity ;
        sosa:resultTime ?time .

FILTER(?humidity > 46.0)
}
ORDER BY DESC(?humidity)
```

- The semantic layer can be queried in SPARQL
- Agnostic to the structure of the underlying data source

|   | location                             | ₽ | humidity          | ₽ | time                                    |
|---|--------------------------------------|---|-------------------|---|-----------------------------------------|
| 1 | http://example.org/building/Rooftop  |   | "65.5"^^xsd:float |   | "2025-10-27T14:00:00.000"^^xsd:dateTime |
| 2 | http://example.org/building/Rooftop  |   | "64.8"^^xsd:float |   | "2025-10-27T14:05:00.000"^^xsd:dateTime |
| 3 | http://example.org/building/room_101 |   | "47.8"^^xsd:float |   | "2025-10-27T14:05:00.000"^^xsd:dateTime |



#### More Complex Query

```
PREFIX sosa: <https://www.w3.org/TR/vocab-ssn/>
PREFIX : <http://example.org/building/>
SELECT ?time (AVG(?indoorTemp) AS ?avgIndoor) (AVG(?outdoorTemp) AS ?avgOutdoor)
       ((AVG(?indoorTemp) - AVG(?outdoorTemp)) AS ?difference)
WHERE {
  ?indoorObs a :IndoorObservation ;
               sosa:observedProperty :temperatureProperty ;
               sosa:hasSimpleResult ?indoorTemp ;
               sosa:resultTime ?time .
  ?outdoorObs a :OutdoorObservation ;
                sosa:observedProperty :temperatureProperty ;
                sosa:hasSimpleResult ?outdoorTemp ;
                sosa:resultTime ?time .
} GROUP BY ?time
ORDER BY ?time
```

Similarly to SQL, SPARQL provides more complex functionalities

|   | time                                    | avgIndoor                       | avgOutdoor \$                   | difference                     |
|---|-----------------------------------------|---------------------------------|---------------------------------|--------------------------------|
| 1 | "2025-10-27T14:05:00.000"^^xsd:dateTime | "23.100000381469727"^^xsd:float | "15.5"^^xsd:float               | "7.600000381469727"^^xsd:float |
| 2 | "2025-10-27T14:00:00.000"^^xsd:dateTime | "22.5"^^xsd:float               | "15.199999809265137"^^xsd:float | "7.300000190734863"^^xsd:float |



#### Conclusion



- Great performance with added semantics
- Data stays in the original database
- All technologies are open source and easily available



#### Challenges

- Additional layer of abstraction
- Ontop TDengine integration is still a work in progress



# Thanks for your attention!

Questions?

