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Background

@ What is Machine Learning as a Service (MLaaS)?

@ An example of MLaaS: CHATGPT

@ Which is the cost?
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What is ML.aaS?
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An example:

CHATGPT
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Which is the

C()St? @ Privacy Leakage due to Public Data Exploitation

Privacy Leakage due to Personal Input Exploitation

o

@ Privacy Leakage due to Unauthorized Access
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Problems of ML.aaS
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How can we do better?

Maximum
Privacy and usability are inversely prit\);g
related as we strengthen one, we
weaken the other. Data
privacy
Goal: Increase privacy without crippling M'“'”J;‘,{Q _
usability. Avoid access to the plaintext by ity Data utility Maximum

: : : data utility
using Homomorphic Encryption
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How does FHE work?
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Analysis of applied FHE
PROS

e Complete protection against
Personal Input Exploitation

e Complete protection against
Unauthorized access
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CONS

e Partial protection against Public
Data Exploitation

e [ntroduction of prohibitive
overhead in computation (x 10 - x
100) and in communication (x 10)
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FHE-validator

 Purpose of the framework:
Comparing standard scikit-learn
Implementations with Concrete-ML
encrypted versions

 Measuring the computational cost

and performance impact of using
encryption on common ML models

© OSCAR LICCIARDI

[ README &8 GPL-3.0 license

FHE Model Evaluator Library

A comprehensive Python library for evaluating and comparing Fully Homomorphic Encryption (FHE) models
against traditional machine learning models. This library provides automated hyperparameter tuning, performance

evaluation, and visualization capabilities for FHE implementations using concrete-ml.

Academic Context

This project is part of the Undergraduate Research Opportunity Programme at the Polytechnic of Turin, under
the supervision of Prof. Pelusi. The research aims to contribute to the academic community by exploring the

practical applications of Fully Homomorphic Encryption in machine learning and data analysis.
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Conclusion

 Takeaway: Protecting privacy in ML
IS not only a technical challenge, it
IS @ human responsibility

e Collaboration is key to a safer,
more trustworthy internet
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Thank you!

DO YOU HAVE ANY QUESTION?
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