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What is Machine Learning as a Service (MLaaS)?1

An example of MLaaS: CHATGPT2
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What is MLaaS?
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Which is the
cost?
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Privacy Leakage due to Public Data Exploitation1

Privacy Leakage due to Personal Input Exploitation 2

Privacy Leakage due to Unauthorized Access3



Problems of MLaaS
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How can we do better?
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Goal: Increase privacy without crippling
usability. Avoid access to the plaintext by
using Homomorphic Encryption

Privacy and usability are inversely
related as we strengthen one, we
weaken the other.
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How does FHE work?
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Inputs encrypted end-to-end
MLaaS never sees raw data
Inference done directly on
ciphertexts
Stored and logged data
remain unreadable
Balances high privacy with
growing eff iciency



Analysis of applied FHE
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PROS CONS

Complete protection against
Personal Input Exploitation

Complete protection against
Unauthorized access

Partial protection against Public
Data Exploitation

Introduction of prohibitive
overhead in computation (x 10 - x
100) and in communication (x 10) 



FHE-validator
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Purpose of the framework:
Comparing standard scikit-learn
implementations with Concrete-ML
encrypted versions

Measuring the computational cost
and performance impact of using
encryption on common ML models



Conclusion
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Takeaway: Protecting privacy in ML

is not only a technical challenge, it

is a human responsibility

Collaboration is key to a safer,

more trustworthy internet



Thank you!
DO YOU HAVE ANY QUESTION?
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