
Zap the Flakes!
Leveraging AI to Combat Flaky Tests with CANNIER

SFSCON ‘25

Daniel Hiller

mailto:dhiller@redhat.com


agenda

● about me
● about flakes
● pre-merge-detection v1
● CANNIER
● pre-merge-detection v2
● Q&A



about me

● Software Engineer | OpenShift Virtualization
● KubeVirt | CI & automation in general

● prow.ci.kubevirt.io
● CI-Health
● Flaky Tests

kubevirt.io - Virtualization for Kubernetes

https://www.redhat.com/en/technologies/cloud-computing/openshift/virtualization
https://kubevirt.io/
https://prow.ci.kubevirt.io
https://github.com/kubevirt/ci-health/#kubevirtkubevirt
https://kubevirt.io


about flakes

source: https://prow.ci.kubevirt.io/pr-history/?org=kubevirt&repo=kubevirt&pr=9445

https://prow.ci.kubevirt.io/pr-history/?org=kubevirt&repo=kubevirt&pr=9445


about flakes

a flake

is a test that

without any code change 

will either fail or pass in successive runs



about flakes

“... of the 91% of developers who claimed to deal 
with flaky tests at least a few times a year,
… 23% [of developers] thought that they were

a serious problem. …”

“… test flakiness was a frequently encountered problem,
with … 15% [of developers] dealing with it daily”

source: “A survey of flaky tests”

https://dl.acm.org/doi/abs/10.1145/3476105


impact of flakes



impact of flakes

Flaky tests cause

● for individual contributors
○ prolonged feedback cycles
○ test trust issues

● for the project community
○ slowdown of merging pull requests - “retest trap”
○ reversal of acceleration effects (i.e. batch testing)
○ waste of CI resources



Goal:
flaky tests must not 
enter the code base!



The only way to find 
out the flakiness of a 
test is to run it as 
often as you can!



pre-merge-detection v1.5

check-tests-for-flakes test lane

why: catch flakes before entering
main

gather the exact set of changed tests

(source)

●

https://prow.ci.kubevirt.io/job-history/gs/kubevirt-prow/pr-logs/directory/pull-kubevirt-check-tests-for-flakes
https://github.com/kubevirt/kubevirt/blob/main/automation/repeated_test.sh


pre-merge-detection v1.5

problems:

● most e2e tests (~900) take 10sec - 2mins 
to run

● 5 times re-run has “only” 88% chance of 
detection

● re-run lane takes ~30mins on average 
for a small set of tests

● capping amount of tests re-run required

sources: KubeVirt e2e test runtimes, check-tests-for-flakes job history, automation/repeated_test.sh

https://grafana.ci.kubevirt.io/d/gY4hNc5Iz/kubevirt-kubevirt-e2e-test-runtimes?orgId=1&viewPanel=9
https://prow.ci.kubevirt.io/job-history/gs/kubevirt-prow/pr-logs/directory/pull-kubevirt-check-tests-for-flakes
https://github.com/kubevirt/kubevirt/blob/c57dc3ec906a7e9429dcb05f0dd1d3612b3f51ef/automation/repeated_test.sh#L26


CANNIER

“... we found that CANNIER was able to reduce the time cost (and therefore 
monetary cost) [of re-running tests] by an average of 88% ...”

source: https://www.gregorykapfhammer.com/research/papers/parry2023/

https://www.gregorykapfhammer.com/research/papers/parry2023/


CANNIER

source: https://www.gregorykapfhammer.com/research/papers/parry2023/

single model

https://www.gregorykapfhammer.com/research/papers/parry2023/


CANNIER

source: https://www.gregorykapfhammer.com/research/papers/parry2023/

feature set

https://www.gregorykapfhammer.com/research/papers/parry2023/


pre-merge-detection v2.0

● CANNIER
○ implemented in Python
○ KubeVirt uses Go

● Runtime Data
○ where to store
○ when to capture

● data science
○ Python has well known frameworks
○ Go state unsure

questions



pre-merge-detection v2.0

parts:

● code (Go)
○ test set extraction
○ feature extraction
○ model prediction
○ model generation

● test lane (Bash)
● model deployment (YAML)

source: https://www.gregorykapfhammer.com/research/papers/parry2023/

implementation

https://www.gregorykapfhammer.com/research/papers/parry2023/


pre-merge-detection

● components of feature vector provide insightful advice to the contributor
○ i.e. high cyclomatic complexity advises to reduction etc.
○ therefore it’s valuable to attach the analysis data to the PR

● possibly increase number of reruns (>5)
○ reduced runtime overall leaves time for more reruns
○ feature vector contains runtimes, thus we can estimate the total re-run time better and 

optimize for it, i.e. group tests by runtime classes

source: https://www.gregorykapfhammer.com/research/papers/parry2023/

possible optimizations

https://www.gregorykapfhammer.com/research/papers/parry2023/


pre-merge-detection v2.1

parts:

● model
○ generation
○ deployment

● test lane
● code

○ test set extraction
○ feature extraction
○ model prediction

parts:

● model
○ …
○ automatic updates

● test lane -> prow external-plugin
○ runs on presubmits
○ runs on postcommits (probably with a 

larger test set)
○ adds helpful feedback

● code
○ test set extraction
○ feature extraction
○ model prediction

improvements



CANNIER

some final remarks:

● CANNIER approach is basically language agnostic
● our implementation is highly dependent on Ginkgo testing framework for 

Go
● adaptation to default go tests or to other frameworks should be an 

implementation detail

source: https://www.gregorykapfhammer.com/research/papers/parry2023/

https://www.gregorykapfhammer.com/research/papers/parry2023/


Links

● CANNIER
○ paper: https://www.gregorykapfhammer.com/research/papers/parry2023/
○ implementation: https://github.com/flake-it/cannier-framework/

● KubeVirt
○ Initial pull request (draft): https://github.com/kubevirt/project-infra/pull/3930
○ Presentation Squash The Flakes @ FOSDEM ‘24: 

https://archive.fosdem.org/2024/schedule/event/fosdem-2024-1805-squash-the-flakes-ho
w-to-minimize-the-impact-of-flaky-tests/

https://www.gregorykapfhammer.com/research/papers/parry2023/
https://github.com/flake-it/cannier-framework/tree/main?tab=readme-ov-file#cannier-framework
https://github.com/kubevirt/project-infra/pull/3930
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-1805-squash-the-flakes-how-to-minimize-the-impact-of-flaky-tests/
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-1805-squash-the-flakes-how-to-minimize-the-impact-of-flaky-tests/


Q&A

Any questions?

Any suggestions for improvement?

Who else is trying to tackle this problem?

What have you done to solve this?



Thank you for attending!

Further questions?

Feel free to send questions and comments to:

��dhiller@redhat.com

kubernetes.slack.com/

@dhiller

@dhiller@fosstodon.org

��dhiller.dev

kubevirt.io
Virtualization for Kubernetes

KubeVirt welcomes all kinds of contributions!

● Weekly community meeting every Wed 3PM CET
● Links:

● KubeVirt website
● KubeVirt user guide
● KubeVirt Contribution Guide
● GitHub
● Kubernetes Slack channels

○ #virtualization
○ #kubevirt-dev

contact me:

mailto:dhiller@redhat.com
https://kubernetes.slack.com/
https://kubernetes.slack.com/team/UJ3HWDYSF
https://fosstodon.org/@dhiller
https://dhiller.dev
https://kubevirt.io
https://kubevirt.io
https://kubevirt.io/user-guide/
https://kubevirt.io/user-guide/contributing/
https://github.com/kubevirt/kubevirt
https://kubernetes.slack.com/archives/C8ED7RKFE
https://kubernetes.slack.com/archives/C0163DT0R8X

