Zap the Flakes!

Leveraging Al to Combat Flaky Tests with CANNIER

SFSCON 125
Daniel Hiller

& RedHat

SFSCON

mailto:dhiller@redhat.com

agenda

about me

about flakes
pre-merge-detection v1
CANNIER
pre-merge-detection v2
Q&A

SFSCON

about me

Software Engineer | OpenShift Virtualization L.
KubeVirt | Cl & automation in genera| ku bEVI rt.IO- Virtualization for Kubernetes

prow.ci.kubevirt.io
Cl-Health
Flaky Tests

SFSCON

https://www.redhat.com/en/technologies/cloud-computing/openshift/virtualization
https://kubevirt.io/
https://prow.ci.kubevirt.io
https://github.com/kubevirt/ci-health/#kubevirtkubevirt
https://kubevirt.io

about flakes

PR History: kubevirt/kubevirt #9445

9d41878
pull-kubevirt-e2e-k8s-1.25-sig-compute-migrations 1637934812398358 163663353191 1636403749595385856
pull-kubevirt-e2e-k8s-1.25-sig-compute 1637934815221125120 86403757321293824

pull-kubevirt-e2e-k8s-1.25-sig-network 1637934813975416 1636403756985749504
pull-kubevirt-e2e-k8s-1.25-sig-operator 16379348#5393091584 1636403757992382464
pull-kubevirt-e2e-k8s-1.25-sig-storage 637934814088663040 1636633532048609280 1636403756704731136
pull-kubevirt-e2e-k8s-1

.26-sig-compute 1637934816471027712 1636404222087925760

DUl oyt coa b o oo ot e 1636403758 9244
pull-kubevirt-e2e-k8s-1.25-sig-compute-migrations #1636633531918585856

pull-kubevirt-e2e-k8s-1.25-sig-compute-migrations #1636403749595385856
16364037

163774034

16364037

Test started Jast.Eriday.at.8:40.AM passed after 1ham49s. (; Test started Jast. Thursday.at.7:33.PM after 1h18m18s. (more info)

JUnit

91/1406 Te:

Tests Suite: [rfe_id:393][crit:high][vendor:cnv-qe@redhat.com][level:systemi[sig-compute] VM Live Migration [Seriallwith a
dedicated migration network Should migrate over that network ~

1315/1406 Tests Skipped.

90/1406 Te

Build Log
Show all hidden lines

1315/1406 Tests Skipped

source: https://prow.ci.kubevirt.io/pr-history/?org=kubevirt&repo=kubevirt&pr=9445

SFSCON

https://prow.ci.kubevirt.io/pr-history/?org=kubevirt&repo=kubevirt&pr=9445

about flakes

a flake
is a test that
without any code change

will either fail or pass in successive runs

SFSCON

about flakes

“... of the 91% of developers who claimed to deal
with flaky tests at least a few times a year,
... 23% [of developers] thought that they were
a serious problem. ..."

“... test flakiness was a frequently encountered problem,
with ... 15% [of developers] dealing with it daily”

source: “A survey of flaky tests”

SFSCON <

https://dl.acm.org/doi/abs/10.1145/3476105

impact of flakes

SFSCON

A THIS IS FINE.

impact of flakes

Flaky tests cause

e for individual contributors
o prolonged feedback cycles
o test trustissues

e for the project community

o slowdown of merging pull requests - “retest trap”
o reversal of acceleration effects (i.e. batch testing)
o waste of Cl resources

SFSCON

Goal:
flaky tests must not
enter the code base!

SFSCON

The only way to find
out the flakiness of a
test is to run it as
often as you can!

SFSCON

pre-merge-detection v

ginko_params="$ginko_params -no- or -succinct --label-filter=!QUARANTINE

file in $(echo "${NEW 3TS} b il LAY

—n

ginko_params+

cho "Test lane: ${TEST_LANE}, preparing cluster up"

f [L "$ginko_params" -dry-run]]

check-tests-for-flakes test lane make cluster-up

make cluster-sync

why: catch flakes before entering
main

t KUBEVIRT_E2E_PARALLEL="false"
NUM_TESTS=1

gather the exact set of changed tests

cho "Test lane: b runs it

(source) if | FUNC_TEST_ARGS "ko_params" make functest
B('Test lane: ${TEST_LANE}, run: $i, tests failed!"

SFSCON

https://prow.ci.kubevirt.io/job-history/gs/kubevirt-prow/pr-logs/directory/pull-kubevirt-check-tests-for-flakes
https://github.com/kubevirt/kubevirt/blob/main/automation/repeated_test.sh

pre-merge-detection v1.5

problems:

e most e2e tests (~900) take 10sec - 2mins

to run
e 5 times re-run has “only” 88% chance of _IT—"—s
detection " ‘

e re-run lane takes ~30mins on average
for a small set of tests
e capping amount of tests re-run required [

e | N = L
S FS CO N sources: KubeVirt e2e test runtimes, check-tests-for-flakes job history, automation/repeated test.sh v

https://grafana.ci.kubevirt.io/d/gY4hNc5Iz/kubevirt-kubevirt-e2e-test-runtimes?orgId=1&viewPanel=9
https://prow.ci.kubevirt.io/job-history/gs/kubevirt-prow/pr-logs/directory/pull-kubevirt-check-tests-for-flakes
https://github.com/kubevirt/kubevirt/blob/c57dc3ec906a7e9429dcb05f0dd1d3612b3f51ef/automation/repeated_test.sh#L26

CANNIER

“...we found that CANNIER was able to reduce the time cost (and therefore
monetary cost) [of re-running tests] by an average of 88% ..."

source: https://www.gregorykapfhammer.com/research/papers/parry2023/

SFSCON

https://www.gregorykapfhammer.com/research/papers/parry2023/

CANNIER

single model

1.0

Upper Positive predicted label
thresh.

Test case

RERUN/IDFCLASS }9 Predicted labelJ

Negative predicted label

source: https://www.gregorykapfhammer.com/research/papers/parry2023/

SFSCON

https://www.gregorykapfhammer.com/research/papers/parry2023/

CANNIER

feature set

SFSCON

Feature Description
1 Read Count Number of times the filesystem had to perform input [9].
2 Write Count Number of times the filesystem had to perform output [9].
3 Run Time Elapsed wall-clock time of the whole test case execution.
4 Wait Time Elapsed wall-clock time spent waiting for input/output oper-
ations to complete.
5 Context Switches Number of voluntary context switches.
6 Covered Lines Number of lines covered.
7 Source Covered Lines = Number of lines covered that are not part of test cases.
8 Covered Changes Total number of times each covered line has been modified in
the last 75 commits.
9 Max. Threads Peak number of concurrently running threads.
10 Max. Children Peak number of concurrently running child processes.
11 Max. Memory Peak memory usage.
12 AST Depth Maximum depth of nested program statements in the test case
code.
13 Assertions Number of assertion statements in the test case code.
14 External Modules Number of non-standard modules (i.e., libraries) used by the
test case.
15 Halstead Volume A measure of the size of an algorithm’s implementation [21,
57,59].
16 Cyclomatic Complexity Number of branches in the test case code [39,57,59].
17 Test Lines of Code Number of lines in the test case code [57,59].
18 Maintainability A measure of how easy the test case code is to support and

modify [19,71].

source: https://www.gregorykapfhammer.com/research/papers/parry2023/

https://www.gregorykapfhammer.com/research/papers/parry2023/

pre-merge-detection v2.0

questions

e CANNIER

o implemented in Python
o KubeVirt uses Go
e Runtime Data
o where to store
o when to capture
e data science

o Python has well known frameworks
o Go state unsure

SFSCON

pre-merge-detection v2.0

implementation

1.0

. Upper Positive predicted labelJ
parts: thresh.

e code (Go)
o testset extraction
o feature extraction
o model prediction
o model generation
e testlane (Bash)
e model deployment (YAML)

Test case

RERUN/IDFCrass |3 Predicted label |

Negative predicted label

source: https://www.gregorykapfhammer.com/research/papers/parry2023/

SFSCON

https://www.gregorykapfhammer.com/research/papers/parry2023/

pre-merge-detection

possible optimizations

e components of feature vector provide insightful advice to the contributor
o i.e. high cyclomatic complexity advises to reduction etc.
o therefore it's valuable to attach the analysis data to the PR

e possibly increase number of reruns (>5)

o reduced runtime overall leaves time for more reruns
o feature vector contains runtimes, thus we can estimate the total re-run time better and
optimize for it, i.e. group tests by runtime classes

source: https://www.gregorykapfhammer.com/research/papers/parry2023/

SFSCON

https://www.gregorykapfhammer.com/research/papers/parry2023/

pre-merge-detection v2.1

improvements
parts:
parts:) model
@)
e model o automatic updates
o generation o testiane -> prow external-plugin
o deployment :> o runs on presubmits
e testlane o runson postcommits (probably with a
e code larger test set)
o test set extraction o adds helpful feedback
o feature extraction e code
o model prediction o testset extraction

o feature extraction
o model prediction

SFSCON N

CANNIER

some final remarks:

e CANNIER approach is basically language agnostic
e our implementation is highly dependent on Ginkgo testing framework for

Go
e adaptation to default go tests or to other frameworks should be an

implementation detail

source: https://www.gregorykapfhammer.com/research/papers/parry2023/

SFSCON

https://www.gregorykapfhammer.com/research/papers/parry2023/

Links

e CANNIER

o paper: https://www.gregorykapfhammer.com/research/papers/parry2023/
o implementation: https://github.com/flake-it/cannier-framework/

e KubeVirt
o Initial pull request (draft): https://github.com/kubevirt/project-infra/pull/3930

o Presentation Squash The Flakes @ FOSDEM ‘24
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-1805-squash-the-flakes-ho

w-to-minimize-the-impact-of-flaky-tests/

SFSCON 7]

https://www.gregorykapfhammer.com/research/papers/parry2023/
https://github.com/flake-it/cannier-framework/tree/main?tab=readme-ov-file#cannier-framework
https://github.com/kubevirt/project-infra/pull/3930
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-1805-squash-the-flakes-how-to-minimize-the-impact-of-flaky-tests/
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-1805-squash-the-flakes-how-to-minimize-the-impact-of-flaky-tests/

Q&A

Any questions?
Any suggestions for improvement?
Who else is trying to tackle this problem?

What have you done to solve this?

SFSCON

Thank you for attending!

Further questions? kubevirt.io

Virtualization for Kubernetes
Feel free to send questions and comments to:

. KubeVirt welcomes all kinds of contributions!
dhiller@redhat.com

contact me: e Weekly community meeting every Wed 3PM CET

0. kubernetes.slack.com/ ° Links:

= @dhiller
@ @dhiller@fosstodon.org

KubeVirt website
KubeVirt user guide
KubeVirt Contribution Guide
GitHub
Kubernetes Slack channels
o #virtualization
o #kubevirt-dev

SFSCON N

dhiller.dev

mailto:dhiller@redhat.com
https://kubernetes.slack.com/
https://kubernetes.slack.com/team/UJ3HWDYSF
https://fosstodon.org/@dhiller
https://dhiller.dev
https://kubevirt.io
https://kubevirt.io
https://kubevirt.io/user-guide/
https://kubevirt.io/user-guide/contributing/
https://github.com/kubevirt/kubevirt
https://kubernetes.slack.com/archives/C8ED7RKFE
https://kubernetes.slack.com/archives/C0163DT0R8X

