ecturaﬁsﬂnd'

Luca Guadagnini

X O @lucaguada

CherryChain’

https://www.cherrychain.it

Domain
Driven
Design

Our Odyssey

< Book 1: What is software architecture?
< Book 2: A common 3-layered approach
< Book 3: A clean and hexagonal solution

% Conclusions: Ithaca

What are we talking about, when we are talking ahout
Software Architecture?

oh com’on!
building
software is

Software elements for reasoning

[User Interface]
System call . .
[Interface } Library Library

) Process Cache
File .
control mechanism

[Blocking I/O }
driver

Ul }

Software elements for reasoning

Library 1

Library 2

[

System call
Interface

|

[

File

J

|

Process
control

|

Cache
mechanism

|

|

Blocking I/O
driver

|

Hi little architect, I'm your
stakeholder, is your
software good enough?

Nobody knows
Developers

What can | do to make my architecture nice?

Quality attributes:

Availability
Deployability
Energy Efficiency
Integrability
Modifiability
Performance
Safety

Security
Testability
Usability

What can | do to make my architecture nice?

Quality attributes:

Availability
Deployability
Energy Efficiency
Integrability
Modifiability
Performance
Safety
Security
Testability
Usability

We don’t
need to
cover
them all

-

Process guidelines:

An architecture team and a CTO bound to developers
Focus on a well-specified queue of QA’s

Docs!

Evaluated by QA

From a walking-skeleton with no integrations to a
incrementally growing system

What can | do to make my architecture nice?

Quality attributes:

Availability
Deployability
Energy Efficiency
Integrability
Modifiability
Performance
Safety
Security
Testability
Usability

We don’t
need to
cover
them all

Structural guidelines:

Functional modularization

QA’s obtained with well-know architectural patterns
Platform or tool independent

Write and read sides segregation

Design patterns are your friend (when you know the
problem you want to solve)

oh com’on!
my

architecture

is fine!

No really, how can | start?

3-layered architecture

Presentation

Business

Persistence

No really, how can | start?

3-layered architecture

Presentation

Business

Persistence

Ve

(&

User Interface

Ve

-

Process control } [

Scheduler

[

Blocking 1/0
driver

)

File

1sanbay

Good enough?

4 .
n-layered architecture
Presentation
Quality attributes: | Web
e [Deployability i Business
e Modifiability >
o [lestability r Persistence
Database

Quality attributes:

"
Ry Y
: ;'ledl'll'a.lb.l'““

Good enough?

n-layered architecture

N

Web Presentation I Mobile Presentation
Web HTTP/1.1 Business
Business : Web HTTP/2.0
Persistence

Database

Simplest solution: The Ram-Runaway Pattern

What really matters?

n™-layered architecture

[Presentation }

Persistence

oh com’on!
it's not done
yet?

How to be clean and hexagonal with an architecture

Let’s start to be clean: Domain Entities

Domain
Entities

Let’s start to be clean: Use Cases

Use Cases

Domain
Entities

Let’s start to be clean: Services (i.e. Gontrollers, Gateways, etc...)

Use Cases

Domain

Entities

Let’s start to be clean: External Services (i.e. Web, DB, UI, etc...)

Use Cases

Domain

Entities

Keep going hexagonal: Domain Model

User Interface Infrastructure

Domain Model

Keep going hexagonal: Domain Services

User Interface Infrastructure

Domain Model

Keep going hexagonal: Application Gore

User Interface Infrastructure

Domain Model

Keep going hexagonal: Requests from outside?

User Interface Infrastructure

?
’
((C

Domain Model

Keep going hexagonal: Ingress Ports and Adapters

User Interface Infrastructure
§
O—a & S
=
sg, ,(/ Domain Model
o~ (=
% o
3 /

K

Keep going hexagonal: Egress Ports and Adapters

User Interface

§
& -3
”@\:\»
YA
) <
S %
Z &
%/

Domain Model

Infrastructure

%
z __— DB Adapter —
0%
% 2
e <
> S
S _
§& 2D
§&

(((

Keep going hexagonal: Slice and dice!

User Interface Infrastructure
<
X ()
$ 2 B
I Z DB Adapter
FORNN 7z
"69 Domain Model
>
2.
% 0/ Domain Services ;M

Application Core

(((

What we learnt:

e Software architecture is not trivial

I[tacha!
at last!

e Process and structural steps are essential
e Team communication is part of architectural tactics

e Business domain always rules

e Gomponent isolations for the better

Conclusions e Greek mythology is awesome

o

I[tacha!
at last!

Conclusions

o

You can choose how to end the Odysseus you got in yourself:

in homeric Odyssey the hero died by age
in the tragedy Telegonia the hero is killed by his son

in Odyssey written by Nikos Kazantzakis the hero started a new
journey of dreams and discoveries

in Dante’s Inferno the hero died because he wanted to know too
much

write your own story

Please Nobody, let
me know if
everything works

References:

Software Architecture in Practice
by Len Bass, Paul Clements, Rick Kazman

Fundamentals of Software Architecture
by Mark Richards, Neal Ford

Clean Architecture
by Robert C. Martin

Get Your Hands Dirty on Clean Architecture
by Tom Hombergs

Designing Hexagonal Architecture with Java
by Davi Vieira

Thanks
for
listening!

