
Ithaca
The Clean and Hexagonal Architectural Island



Luca Guadagnini
@lucaguada

https://www.cherrychain.it

Domain
  Driven
    Design



Our Odyssey

❖ Book 1: What is software architecture?

❖ Book 2: A common 3-layered approach

❖ Book 3: A clean and hexagonal solution

❖ Conclusions: Ithaca



What are we talking about, when we are talking about
Software Architecture?

oh com’on! 
building 

software is 
easy!
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The eye of the beholder stakeholder

Hi little architect, I’m your 
stakeholder, is your 

software good enough?

Nobody knows
Developers



What can I do to make my architecture nice?

Quality attributes:

● Availability
● Deployability
● Energy Efficiency
● Integrability
● Modifiability
● Performance
● Safety
● Security
● Testability
● Usability



What can I do to make my architecture nice?

Quality attributes:

● Availability
● Deployability
● Energy Efficiency
● Integrability
● Modifiability
● Performance
● Safety
● Security
● Testability
● Usability

We don’t 
need to 
cover 

them all

Process guidelines:

● An architecture team and a CTO bound to developers

● Focus on a well-specified queue of QA’s

● Docs!

● Evaluated by QA

● From a walking-skeleton with no integrations to a 
incrementally growing system



What can I do to make my architecture nice?

Quality attributes:

● Availability
● Deployability
● Energy Efficiency
● Integrability
● Modifiability
● Performance
● Safety
● Security
● Testability
● Usability

Structural guidelines:

● Functional modularization

● QA’s obtained with well-know architectural patterns

● Platform or tool independent

● Write and read sides segregation

● Design patterns are your friend (when you know the 
problem you want to solve)We don’t 

need to 
cover 

them all



A common architectural pattern: the 3-layered architecture

oh com’on! 
my 

architecture 
is fine!



No really, how can I start?
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Good enough?

Quality attributes:

● Deployability
● Modifiability
● Testability
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Good enough?

Quality attributes:

● Deployability
● Modifiability
● Testability
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Simplest solution: The Ram-Runaway Pattern



What really matters?

nm-layered architecture
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How to be clean and hexagonal with an architecture

oh com’on! 
it’s not done 

yet?



Let’s start to be clean: Domain Entities

Domain
Entities



Let’s start to be clean: Use Cases
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Let’s start to be clean: Services (i.e. Controllers, Gateways, etc…)
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Let’s start to be clean: External Services (i.e. Web, DB, UI, etc…)
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Keep going hexagonal: Domain Model

User Interface Infrastructure

Domain Model



Keep going hexagonal: Domain Services

User Interface Infrastructure
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Keep going hexagonal: Application Core
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Keep going hexagonal: Requests from outside?
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Keep going hexagonal: Ingress Ports and Adapters
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Keep going hexagonal: Slice and dice!
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Conclusions

Itacha!
at last!

What we learnt:

● Software architecture is not trivial

● Process and structural steps are essential

● Team communication is part of architectural tactics

● Business domain always rules

● Component isolations for the better 

● Greek mythology is awesome



Conclusions

Itacha!
at last!

You can choose how to end the Odysseus you got in yourself:

● in homeric Odyssey the hero died by age

● in the tragedy Telegonia the hero is killed by his son

● in Odyssey written by Nikos Kazantzakis the hero started a new 
journey of dreams and discoveries 

● in Dante’s Inferno the hero died because he wanted to know too 
much

● write your own story



Please Nobody, let 
me know if 

everything works!



References:

● Software Architecture in Practice
by Len Bass, Paul Clements, Rick Kazman

● Fundamentals of Software Architecture
by Mark Richards, Neal Ford

● Clean Architecture
by Robert C. Martin

● Get Your Hands Dirty on Clean Architecture
by Tom Hombergs

● Designing Hexagonal Architecture with Java
by Davi Vieira

Thanks 
for 

listening!


