
Ithaca
The Clean and Hexagonal Architectural Island

Luca Guadagnini
@lucaguada

https://www.cherrychain.it

Domain
 Driven
 Design

Our Odyssey

❖ Book 1: What is software architecture?

❖ Book 2: A common 3-layered approach

❖ Book 3: A clean and hexagonal solution

❖ Conclusions: Ithaca

What are we talking about, when we are talking about
Software Architecture?

oh com’on!
building

software is
easy!

Software elements for reasoning

Library
System call

Interface

File
Process
control

Cache
mechanism

User Interface

Library

Blocking I/O
driver

Software elements for reasoning

File

UI

System call
Interface

Library 1

Library 2

Process
control

Cache
mechanism

Blocking I/O
driver

The eye of the beholder stakeholder

Hi little architect, I’m your
stakeholder, is your

software good enough?

Nobody knows
Developers

What can I do to make my architecture nice?

Quality attributes:

● Availability
● Deployability
● Energy Efficiency
● Integrability
● Modifiability
● Performance
● Safety
● Security
● Testability
● Usability

What can I do to make my architecture nice?

Quality attributes:

● Availability
● Deployability
● Energy Efficiency
● Integrability
● Modifiability
● Performance
● Safety
● Security
● Testability
● Usability

We don’t
need to
cover

them all

Process guidelines:

● An architecture team and a CTO bound to developers

● Focus on a well-specified queue of QA’s

● Docs!

● Evaluated by QA

● From a walking-skeleton with no integrations to a
incrementally growing system

What can I do to make my architecture nice?

Quality attributes:

● Availability
● Deployability
● Energy Efficiency
● Integrability
● Modifiability
● Performance
● Safety
● Security
● Testability
● Usability

Structural guidelines:

● Functional modularization

● QA’s obtained with well-know architectural patterns

● Platform or tool independent

● Write and read sides segregation

● Design patterns are your friend (when you know the
problem you want to solve)We don’t

need to
cover

them all

A common architectural pattern: the 3-layered architecture

oh com’on!
my

architecture
is fine!

No really, how can I start?

3-layered architecture

Presentation

Business

Persistence

No really, how can I start?

3-layered architecture

Presentation

Business

Persistence

Process control

Blocking I/O
driver

User Interface

File

Scheduler

Request

Good enough?

Quality attributes:

● Deployability
● Modifiability
● Testability

n-layered architecture

Presentation

Business

Persistence

Web

Database

Good enough?

Quality attributes:

● Deployability
● Modifiability
● Testability

n-layered architecture

Web Presentation

Business

Persistence

Web HTTP/1.1

Database

Web HTTP/2.0

Mobile Presentation

Business

Simplest solution: The Ram-Runaway Pattern

What really matters?

nm-layered architecture

Presentation

Business

Persistence

How to be clean and hexagonal with an architecture

oh com’on!
it’s not done

yet?

Let’s start to be clean: Domain Entities

Domain
Entities

Let’s start to be clean: Use Cases

Use Cases

Domain
Entities

Let’s start to be clean: Services (i.e. Controllers, Gateways, etc…)

Use Cases

Domain
Entities

Controllers

Pre
sen

ter
sGateways

Let’s start to be clean: External Services (i.e. Web, DB, UI, etc…)

Use Cases

Domain
Entities

Controllers

Pre
sen

ter
sGateways

Web

UIDB

Keep going hexagonal: Domain Model

User Interface Infrastructure

Domain Model

Keep going hexagonal: Domain Services

User Interface Infrastructure

Domain Services

Domain Model

Keep going hexagonal: Application Core

User Interface Infrastructure

Application Core

Domain Services

Domain Model

Keep going hexagonal: Requests from outside?

User Interface Infrastructure

Application Core

Domain Services

Domain Model

Keep going hexagonal: Ingress Ports and Adapters

User Interface Infrastructure

Por
t

Por
t

We
b A

dap
ter

Ter
mi

nal
 Ad

apt
er

Application Core

Domain Services

Domain Model

Keep going hexagonal: Egress Ports and Adapters

User Interface Infrastructure

Por
t

Por
t

We
b A

dap
ter

Ter
mi

nal
 Ad

apt
er

Port
Port

ORM Adapter

DB Adapter

Mail Adapter

Application Core

Domain Services

Domain Model

Keep going hexagonal: Slice and dice!

User Interface Infrastructure

Por
t

Por
t

We
b A

dap
ter

Ter
mi

nal
 Ad

apt
er

Port
Port

ORM Adapter

DB Adapter

Mail Adapter

Application Core

Domain Services

Domain Model

Component

Conclusions

Itacha!
at last!

What we learnt:

● Software architecture is not trivial

● Process and structural steps are essential

● Team communication is part of architectural tactics

● Business domain always rules

● Component isolations for the better

● Greek mythology is awesome

Conclusions

Itacha!
at last!

You can choose how to end the Odysseus you got in yourself:

● in homeric Odyssey the hero died by age

● in the tragedy Telegonia the hero is killed by his son

● in Odyssey written by Nikos Kazantzakis the hero started a new
journey of dreams and discoveries

● in Dante’s Inferno the hero died because he wanted to know too
much

● write your own story

Please Nobody, let
me know if

everything works!

References:

● Software Architecture in Practice
by Len Bass, Paul Clements, Rick Kazman

● Fundamentals of Software Architecture
by Mark Richards, Neal Ford

● Clean Architecture
by Robert C. Martin

● Get Your Hands Dirty on Clean Architecture
by Tom Hombergs

● Designing Hexagonal Architecture with Java
by Davi Vieira

Thanks
for

listening!

