

Automating GIT for development
on large distributed teams

Yuri D'Elia
2023-11-10

Branching in git
● Work on the same code without interference
● Test separate changes independently
● Reconcile conflicting changes "easily"
● Allows history rewriting!

Keeping repository hygiene

Which strategy?

"Noisy history"

"Destroy history"

"Fake history"

Strategies compared

 ← Bugfix

← Feature

 ← Feature

Workflow-based development
● Each branching methodology has pros and cons
● A branching policy for a project is called a "workflow":

– Eg: "Always split logical changes":
● Each feature into it's own branch
● Each bugfix into it's own branch

● Tools to handle popular workflows:
git-flow / GitHub flow / GitLab flow / OneFlow …

Workflow-based development
● Worflows help when working in large

projects
● … but increase reliance on branching
● Branching already increases with team size
● Branch dependency now common!

Workflow dependency example
● Start working on a feature
● Bug discovered preventing feature from working:

– re-branch from mainline for bugfix
– submit bug for approval (stall bugfix)

● Return to feature:
– feature now depends on bugfix
– merge/rebase or stall feature?

What if bugfix requires changes as feature is updated?

Manual branch management
● Updating the bugfix branch:

– switch to bugfix branch
– modify, commit as required…
– push

● Updating the feature branch:
– switch to feature branch
– merge bugfix
– continue development as usual...

Bugfix & Feature evolution

Stalled branch reasons
● Testing:

– Lengthy CI
– Physical verification undergoing

● Policy:
– "Feature can't be merged in current release"

● Review:
– Timezone delays
– Relevant reviewers busy
– Unknown/different remote team priorities
– No upstream interest

example: languishing PRs

Branch management
● Development on stalled branched can

continue with more burden
● Branch dependencies can be expressed and

resolved with merge/rebase operations
● … why not introducing automation?

git-assembler
● At its core:

– Declare how branches should be combined with either
rebase or merge with rules

● What it does:
– Performs the operation only when necessary
– Performs dependent operations in topological order
– Shows the branch dependency state!

git-assembler example
● Keep feature updated by merging bugfix when new commits appear

using one rule:
merge feature bugfix

● How do run it:
$ git as -a

● How it helps:
– switches to feature branch if needed
– merge bugfix if needed
– switches to the original branch if needed

Bugfix & Feature evolution²
● Reviewer calls for

rebase of B
● merge can't be used

on feature anymore

Bugfix & Feature evolution²

Bugfix & Feature evolution²

git-assembler example²
● Keep bugfix (and feature) rebased on master:

rebase bugfix master

rebase feature bugfix

● How to see the branch topology:
$ git as

feature <- bugfix <- master

● How it helps:
– rebases only when required
– rebases in the correct order

Usage in practice

declarations resulting
structure

● Merge
● Rebase
● Stage

– Always re-create a new branch
from a known starting point

● Base
– Optionally re-create a new branch

from a known starting point

Branch operations

(git) tools for patch management
● st-git: Linear stack of patches (similar to quilt)

https://github.com/stacked-git/stgit
● topgit: Patch history and dependency

https://github.com/mackyle/topgit
● git-assembler: Branch/tree dependency

https://gitlab.com/wavexx/git-assembler
● git-replay: Branch dependency

https://github.com/olets/git-replay

https://github.com/stacked-git/stgit
https://github.com/mackyle/topgit
https://gitlab.com/wavexx/git-assembler
https://github.com/olets/git-replay

Why git-assembler?
● Assumes nothing from upstream, contributors or collaborators:

– Any remote workflow is acceptable
– Any local workflow can be replicated

● Can be used cooperatively (with a versioned configuration)
● Stateless:

– Repository can be manipulated by hand
– Rules can be changed at any time

● Supports worktrees:
– Branches are updated in their respective worktree!

